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1. Background
1.1. Turbulent particle dispersion

Turbulent dispersion of particles and droplets in free shear flows is important in many two-
phase flow areas, such as sprays and particle combustion or bubble diffusion in rising plumes.
Turbulent dispersion for two-phase flows herein refers to the evolution of particle, droplet, or
bubble concentration due to the underlying continuous-phase turbulence. In general, turbulent
dispersion can be separated into two different aspects: (a) mean diffusion, which characterizes only
the overall mean (time-averaged) spread rate of particles caused by the mean statistical properties
of the turbulence, and (b) structural dispersion, which includes the details of the non-uniform
particle concentration structures generated by local instantaneous features of the flow, primarily
caused by the spatio-temporal turbulent eddy features and evolutions. The differences between
these two aspects are shown in Fig. 1 for example the case of particle diffusion in a boundary
layer.

If one uses direct numerical simulation (DNS) to resolve the turbulent eddies down to the
Kolmogorov lengths, then the two aspects are obtained directly. Similarly, large eddy simulation
(LES) can be used to obtain at least part of the structural dispersion features. Unfortunately for
most engineering problems for turbulent flows of high Reynolds number, the computational re-
sources for DNS or LES are far beyond those presently available. As such, the most common
approach is to use Reynolds averaged Navier—Strokes (RANS) for the continuous-fluid which are
based on empirical closure arguments for predicting mean turbulent momentum diffusion. This
can be illustrated by the trends shown in Fig. 2 (Loth, 2000) where the number of computational
nodes and the total CPU (iterations times number of nodes) becomes very high at large Reynolds
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Fig. 1. Particle distribution in a turbulent boundary layer showing: (a) mean diffusion and (b) structural dispersion.
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Fig. 2. Approximate requirements to compute continuous-phase wall-bounded flows for: (a) number of nodes (N;) and
(b) CPU time (N; x cycles).
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numbers when viscous sub-layers need to be simulated. However for RANS only the mean
particle diffusion aspect can be obtained, regardless of whether Lagrangian or Eulerian methods
are used for the particle-phase. For this approach, robust models for particle diffusion can be of
service for engineering calculations.

For mean diffusion, one assumes that the concentration distribution of the particles is smoothly
varying in space on length scales associated with the mean flow features (not the instantaneous
turbulent eddy features). To consider the particle density as a continuum in the mean (as in Fig.
1(a)), one can define the local particle number-density (n,), which is the number of particles (N)
per unit volume of the mixed-fluid (€,,) in the limit n, = 6N /0Q,,. For a continuum of n,, the
mixed-fluid volume contains many particles, i.e., 6Qy, > d°/a, d is the particle diameter (or
equivalent volumetric diameter if non-spherical), and « is the volume fraction (volume occupied
by particles divided by the total mixed-fluid volume). For time-averaged turbulence, one must also
average over the eddy integral scales (A1), i.e., 6Qn > A°.

To quantify mean diffusion, it is helpful to define the turbulent particle diffusion ratio, D, which
is defined as the ratio of mean particle diffusion to continuous-fluid turbulent diffusion of a scalar:
D = vy /vg. The turbulent particle Schmidt number is defined as the ratio of continuous-fluid
momentum diffusion to particle diffusion in turbulence: Sc, = vg /v, Where vy is the turbulent
eddy viscosity of the fluid. This is analogous to the turbulent Schmidt number which is the ratio of
momentum diffusion to mass (scalar) diffusion: Scg = vg/vs. Typically, mass diffuses faster than
momentum in turbulent free shear flows and Scy, is generally reported as 0.7 for jets and mixing
layers (Crowe et al., 1988; Faeth, 1987; Yakhot and Orzag, 1986); Sc, is equal to Scy for the case
of infinitely small particles in such flows. For finite size particles, Csanady (1963) notes that mean
particle diffusion varies quadratically for short-time periods (¢ < t,,) but linearly for long-time
periods (¢ > 1.,), where 7, is the long-time diffusivity time-scale and significantly exceeds both 1,
(the particle response time) and 7, (the particle-eddy interaction time-scale). The latter criterion is
demonstrated by the computational results of Elghobashi and Truesdell (1992) and Bocksell and
Loth (1998), which showed that long-time diffusion was not obtained until the integration time
had substantially exceeded the particle response times and interaction times by as much as a factor
of eight, i.e., 7o, > max(t,, Tint).

1.2. Four features of mean turbulent particle diffusion

For heavy particles which are dependent primarily on drag and gravity, the mean diffusion can
be characterized by four features described in the following. Herein the surrounding fluid is as-
sumed to behave in a continuum and the particle concentration is dilute, such that particle—
particle interactions and two-way coupling effects can be ignored. Criteria for this assumption can
be found in Elghobashi (1994), Crowe et al. (1998) and Loth (2000).

The most often cited mean diffusion feature is the dependence of Stokes number for free shear
flows at constant gravity and continuous-flow conditions. The Stokes number is conventionally
defined as the ratio of the particle kinematic response time to the local continuous-fluid turbulent
integral time scale: St, = 7,/7,4. The particle response time for a sphere can be written as a
function of particle diameter (d) and the ratio of particle density to continuous-fluid density

(¥ = py/py) as
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where Cy is the added mass coefficient and fim, is the Stokes correction to the drag coefficient at
terminal velocity (Vem). The general Stokes correction (f) is defined as the ratio of the particle
drag coefficient (Cp) to the Stokes drag coefficient, i.e., f = (CpRe,)/24, and is approximately
equal to unity for particle Reynolds number less than unity. The Reynolds number is in turn
based on the magnitude of the relative velocity : Re, = p;|V.a|d/ 1, where the relative velocity
vector is the difference between the particle velocity and the fluid velocity immediately sur-
rounding the particle, i.e., Viq =V, — Vip.

The primary significance of the Stokes number is that it dictates how readily a particle can
follow the fluctuations of an eddy. For Stokes numbers much less than unity, the particle will act
nearly as a passive tracer since it quickly responds to the continuous-fluid fluctuations, i.e., D ~ 1.
For Stokes numbers much greater than unity and finite gravity, the particle will not be able to
respond to the fluctuations yielding a trajectory that is primarily controlled by mean convection
and gravity i.e., D ~ 0. For intermediate Stokes numbers, the diffusion is typically bounded by
these extremes and monotonically decreases as particle diameter increases (for fixed gravity).
However, there have been reports of mean particle diffusion rates in excess of that for a scalar
(D > 1) in jets and planar shear layers with particles for Stokes numbers of order unity (Crowe,
1982). This effect has been referred to as “diffusion peaking”, but unfortunately most of the ex-
perimental data which have demonstrated this feature contain significant uncertainties rendering
the results primarily qualitative (see Loth, 1998). In addition, the experiments were for non-
homogeneous flows with ¢ < 7, such that long-time diffusion may not have been reached.
Substantial diffusion peaking has not been experimentally observed for fully developed homo-
geneous isotropic turbulence with ¢ > 7.

The second particle diffusion feature is the crossing-trajectory effect, which results when the
particle-eddy interactions are dominated by a particle traversal of the eddy (as opposed to the
eddy lifetime). This effect is related to the drift parameter which is defined as the ratio of the
particle terminal velocity to the turbulent fluctuation intensities, i.€., = Vem/ Vs for iso-
tropic turbulence. Wells and Stock (1983) have shown that this effect decreases diffusion as y
increases for constant Stokes numbers. This crossing-trajectory effect can also be interpreted as
a mean diffusion dependence on eddy Froude number, Fr,, as discussed by Reeks (1977). The
eddy Froude number is defined as the ratio of hydrostatic to integral-scale hydrodynamic
pressure gradients given as Fr, =V 2/4gA (Taeibi-Rahni et al., 1994). Since we can write
7 = (¥ + Cw) (Viemm) /(¥ — 1]g) and 14 = A/V/ o for an isotropic turbulent flow, then
Sty = (4Fr p) (¥ + Cwm)/|¥ — 1|. Thus for a given value of ¥ and Cy, we note that of the three
integral-scale non-dimensional parameters (St4,7y,Fr,), only two are independent. This con-
clusion is consistent with Sz, and y identified as the primary parameters in several recent
analytical studies for heavy particle diffusion (Stock, 1996; Mei and Adrian, 1993; Hunt et al.,
1994) as well as St, and Fr, identified for buoyant particle diffusion (Sene et al., 1994; Ganan-
Calvo and Lasheras, 1991; Loth, 1998). Note that the above is limited to conditions where
particle shape effects, non-linear drag-effects, etc., can be linearly included into the Stokes
correction factor (used in the definition of particle response time). For particles no longer
governed by ¥ > 1,Re, may also become important if there is mean diffusion due to viscous
lift fluctuations.
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The third feature of mean particle diffusion is the inertial-limit behavior, which is the long-time
diffusion of particles with very large response times in negligible gravity (St, > 1 and y < 1). For
isotropic homogeneous flow, Reeks (1977) and Stock (1996) note that this limit yields finite (non-
zero) diffusion. The long-time D in this limit is essentially proportional to the ratio of the
Lagrangian to the moving-Eulerian continuous fluid time correlation time-scales (T /T mg). If
the two time scales are approximately equal, the inertial-limit behavior yields a mean diffusion
about that of a passive scalar, i.e., D ~ 1. However, the relationship between these two time-scales
has been the subject of recent debate because of some conflicting results.

With respect to experiments, Wells and Stock (1983) measured particle diffusion for zerogravity
wake-turbulence and found only a small increase in diffusion (within experimental uncertainty),
suggesting 741 /T me ~ 1. In addition, cinematic Particle Image Velocimetry experiments by Loth
and Stedl (1999) measured two-dimensional versions of 7, and 7, in a high Reynolds number
shear layer and also found they were nearly equal when based on velocity fluctuations. However,
Sato and Yamamoto (1987) measured 7, and compared these to induced values of 7,,r and
found 741 /7 mE in the range of 0.3-0.6 depending on the flow Reynolds number. With respect to
simulations, Wang and Stock (1993) approximated turbulence with a Fourier series simulations
and found 1,1 /7 4mg should be much less than unity, e.g., 0.4. However, isotropic DNS simula-
tions of decaying turbulence by Elghobashi and Truesdell (1992) and of stationary turbulence by
Yueng and Pope (1989) and Groszmann et al. (1999) demonstrated that 7, /7 mg ~ 1. The
Elghobashi and Truesdell (1992) study also noted that the Lagrangian correlation was somewhat
greater for short-times (¢ < 7,4 ) and somewhat smaller for long-times, which may explain some of
the discrepancies. Based on the above results, a time-scale ratio of approximately unity is sug-
gested herein, and is consistent with the suggestion of Viollet and Simonin (1994). However,
further research is obviously needed to quantify this time-scale ratio.

The fourth feature of mean particle diffusion is the continuity effect, which arises due to the
negative loops in the lateral correlation for an exponentially decaying longitudinal correlation
function when moving relative to the turbulent fluctuations. This results in the velocity correlation
function yielding lateral correlation length scales that are asymptotically one-half the longitudinal
correlation length scales (Csanady, 1963). This ratio has been confirmed by experiments and
simulations (Stock, 1996, Elghobashi and Truesdell, 1992). Stock (1996) notes that the continuity
effect essentially modifies the eddy lifetime seen by the particle depending on whether the diffusion
considered is streamwise or transverse to the mean particle direction.

To summarize, the mean diffusion of heavy particles (dependent primarily on drag and gravity)
in homogeneous isotropic turbulence contains four fundamental features:

(a) Stokes number effect (reduced diffusion for larger particles in finite gravity);

(b) crossing-trajectory effect (reduced diffusion for increasing y);

(c) inertial-limit behavior (proper limit of finite diffusion for infinite S¢, and y = 0);

(d) continuity effect (anisotropic diffusion between longitudinal and lateral directions).

1.3. Lagrangian modeling of the mean particle diffusion
Stochastic Lagrangian models have had significant success in describing turbulent diffusion and

they are overviewed herein since their basic timescales representations are employed for the
present Eulerian diffusion model. These Lagrangian formulations employ stochastic sampling to
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simulate the turbulent fluctuations of the fluid at the particle location. In the most common case,
the time-averaged velocities and mean turbulence correlations from Eulerian RANS computa-
tions of the continuous phase are used as the statistical correlations to construct the stochastic
sampling (Maclnnes and Bracco, 1992). A particularly successful technique is the continuous
random walk (CRW) model which has been shown to quantitatively describe particle diffusion in
a variety of free shear flows (e.g., Bocksell and Loth, 1998). This technique uses randomly gen-
erated continuous-fluid velocity fluctuations at each timestep coupled with a finite correlation
between timesteps. With anisotropic flows, the magnitude of the random velocity fluctuations is
specified by the mean velocity stress tensor ugup;. If one assumes isotropy, then the magnitude is
based on overall turbulent kinetic energy (k).

These stochastic models require timescales to quantify the statistical decorrelation of the
velocity perturbations. The particle-eddy interaction an interaction time scale is often given as

o )
Tintij = T T Turaj (2)

The isotropic eddy lifetime is typically given as t, = c.k/e, where ¢ is turbulent dissipation, and ¢,
is an empirical constant, ca. 0.27, which is based on experimental data for two-phase particle
dispersion (Maclnnes and Bracco, 1992, Bocksell and Loth, 1998).

The eddy traversal time of (2) for isotropic turbulence can be estimated from the relative ve-
locity and the eddy integral scale as 7y,; = Vi/A4;. The local integral eddy size is given by
A=c Achcf/ *3/2 /e, where ¢, is the conventional RANS turbulent length-scale coefficient
(=0.09), and ¢, is again an empirical coefficient obtained through calibration with experimental
data, ca. 1.6 (Bocksell and Loth, 1999). Note that the ratio ¢,/c, is proportional to the structure
parameter (Stock, 1996) and is herein assumed a constant for free-shear flows. However, it can
vary for non-equilibrium turbulent flows (Hunt et al., 1994; Stock, 1996; Graham, 1998) par-
ticularly in the case of wall-bounded flows (Kallio and Reeks, 1989; Ushijima and Perkins, 1999).
The continuity effect is incorporated by using c.; = 1 + V1i/|Via| as described by Bocksell and
Loth (1999) where i is the streamwise direction of the particle (along V,,). After a time exceeding
several 7,,’s, the streamwise direction will correspond to the gravity direction, in which the above
expression is consistent with that of Graham (1998).

Application of the above timescales with the GRW Lagrangian technique for various free shear
flows (wakes and jets) yields high fidelity with respect to mean particle diffusion for integration
times both less than and greater than the long-time diffusivity time scale, 7., (Bocksell and Loth,
1998). Results for simple isotropic homogeneous turbulence for heavy particles (¥ > 1) with
linear (Stokesian) drag coefficients were also obtained with the CRW model. Fig. 3 from Bocksell
and Loth (1998) describes the change in Dy (transverse diffusion rates) as St, and Fr, vary using a
CRW model for homogeneous isotropic turbulence. The results show that the diffusion mono-
tonically reduces as St, increases, and this reduction is delayed as the Froude number increases.
As the Froude number approaches infinity (zero-gravity), the reduction is indefinitely delayed,
thus yielding the inertial limit feature. Inclusion of fluctuating lift and fluid-stress forces for
buoyant particles (bubbles) in the same flow yielded qualitatively similar results, indicating that
the drag forces still dominate. This is consistent with the successful bubbly jet flow predictions of
Sun and Faeth (1986); although Michaelidis (1997) showed that in low particle Reynolds number
circumstances Basset history can significantly contribute to turbulent diffusion.
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Fig. 3. Transverse particle diffusion ratio as a function of particle Stokes number and eddy Froude number from
Lagrangian simulations.

2. Eulerian modeling of mean particle diffusion

For simulating turbulent diffusion of particles, the Eulerian approach has several distinct ad-
vantages over Lagrangian methods. For particles present throughout a large extent of the com-
putational domain, the Eulerian description typically requires fewer degrees of freedom to
quantitatively describe particle concentration variations, since statistical collection is needed for
the Lagrangian case (especially if a stochastic diffusion model is used). Lagrangian methods can
also be problematic if the particle-cloud volume is larger than the fluid-averaging volume and/or is
difficult to compute (Loth, 2000). In addition, an Eulerian approach allows both phases to be
handled with a consistent numerical scheme and a consistent numerical grid. This discretization
coincidence for an Eulerian treatment of the particles becomes a distinct accuracy advantage when
one is trying to compute the effects of the particles on the continuous fluid for two-way coupling
(Shrayber, 1979, Sivier et al., 1996). In the following, we are interested in predicting mean tur-
bulent diffusion within the Eulerian framework while retaining the turbulent diffusion perfor-
mance of the Lagrangian CRW approaches.

The time-averaged or density-averaged RANS equations for the dispersed-phase involve cor-
relations of mean particle spatial density (&) and velocity (#,;) to describe the mass diffusion due
to turbulence. For example, the time-averaged continuity equation can be written as:

07 /0t + 0(auy;) [0x; = —0(0'uy,) [Ox;
Use of a particle-eddy-viscosity model (which essentially invokes a Fickian diffusion assumption)
thus requires an Eulerian model for D, i.e.,

—0'uy; = (vp) (06 /0x;) = (viD/Scq ) (06 /x;)
This gradient-based diffusion assumption for long-time particle concentration is consistent with
that for turbulent diffusion of momentum and mass for RANS treatments of the continuous-

fluid. For the latter, one assumes that the length and time scales of the turbulence (A and t,)
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are small compared to the characteristic features of the flow for which variations are to be
predicted. Similarly, predicted variations of particle concentration are only valid over convected
time scales of about 7., or more. This is to insure sufficient temporal averaging of particle
velocity variations and results in limit of applicability of such a model to convected lengths of
Uyt or more.

For the Favre-averaged approach, there is no source-term for the continuity equation but the
momentum equation still requires an Eulerian model for D (Loth, 2000). Some studies simply use
D =1 (e.g., Kashiwa and Gore, 1987) or D = 0 (e.g., Vaidya et al., 1995), which are respectively
only reasonable for particles which are sufficiently small (St, < 1) or sufficiently large (y > 1).
Several algebraic models include a Stokes number dependence, e.g., models cited by Wu and Liu
(1991) where D = 1/[1 + S£3] and by Shirolkar et al., 1996 where D = 1/[1 + St,], but such ex-
pressions do not include the Fr, dependence shown in Fig. 3. Similarly, other algebraic models
noted by Alonso (1981), Faeth (1987), Soo (1990) and Loth (1998) do not incorporate inertial-
limit behavior or the continuity effect and thus may not be as physically robust as the Lagrangian
models.

An Eulerian diffusion model which does account for the four key diffusion features is given by
Reeks (1977) as integro-differential equations. A more convenient algebraic expression was de-
veloped from the Reeks by Wang and Stock (1993). This model gives the transverse (i = 1,2) and
streamwise (i = 3) long-time diffusivity (Dy; and Ds3) for homogeneous isotropic turbulence and
assumes 7,1 /7 me~0.4 (Stock, 1996). If one “modifies” their model by assuming 7,1 /T me~1 as
was suggested in Section 1, the resulting diffusion ratios with a structure parameter of unity are:

Modified stock model:

Dy =Dy = (7" + 1" = (3/2))/[7" + 1],
_ (3)
Dss = [(* + 1))/ + 1.

The present diffusion model assumes D;; = 1y /74, as noted by Csanady (1963) and Viollet and

Simonin (1994). This approximation is combined with (2) and the time scales from the above

Lagrangian models (for particles which are drag-dominated) to give the anisotropic model
Present (Csandy-based) model:

Dy = [1+ (2/3)(yee) (eacesc?) 72,
p = Via/(2k/3)"?, (4)
Cei = 1+ Vrel,i/lvrel|a

where the empirical coefficients are again ¢, = 0.27,¢4 = 1.6 and ¢, = 0.09. The anisotropic
version of this model becomes
Present anisotropic model:

Dy = [14(2/3)(rye0) (eacescy) T2,

Vij = Vrel/[“;iu/fj]
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Fig. 4. Eulerian models of particle diffusion ratio as a function of y (ratio of particle terminal velocity to fluid fluc-
tuations).

In both the Stock model and present Eulerian model, the analytical description provides a
crossing-trajectory effect (D decreases as y increases), a continuity effect (D;; becomes one half of
Ds;3 for very large y values), and an inertial-limit effect (non-zero D as St, approaches infinity for
y = 0). The present model and the “modified” Stock model are shown in Fig. 4 for isotropic
turbulence, where it is clear that both models yield a linear decrease in particle diffusion at large v,
such that the differences between the two models are only quantitative. In fact, the modified Stock
model can be shown to have nearly the same quantitative behavior as the present model by
adjustment of their structure parameter.

Now let us consider the fidelity of the present model for long-time diffusion of particle and
bubbles in nearly homogeneous isotropic turbulence based on experimental, DNS, and CRW
results. Fig. 5 shows the transverse diffusion of the present (Csanady-based) Eulerian model as a
function of y. We observe that the heavy and buoyant particle CRW Lagrangian stochastic
simulation results (for a variety of Stokes numbers) approximately match the trends of the present
Eulerian diffusion model. In addition, there is reasonable agreement with all the data for ho-
mogeneous isotropic turbulence: the DNS results of heavy particles by Elghobashi and Truesdell
(1992), the measurements of heavy particles by Wells and Stock (1983), and the measurements of
buoyant particles by Lasheras (1998) and Poorte (1998). The results indicate that mean particle
diffusion is dominated by y and not S¢,, i.e., the variations due to Fr, when the CRW results were
plotted vs St, (Fig. 3) are eliminated when plotted vs y (Fig. 5). This is consistent with the ex-
periments by Wells and Stock (1983) and DNS simulations by Groszmann et al. (1999). It also
suggests that the present assumption of 7, /T mg~ 1 is reasonable. In addition, CRW simulations
by Bocksell and Loth (1998, 1999) noted that use of non-linear drag coefficients did not signifi-
cantly modify these long-time diffusion results.

The agreement of the present model with buoyant particle results indicates that drag-based
mean diffusion typically dominates over effects caused by stress-gradient and lift fluctuations. The
result that the bubble diffusion is dominated by the velocity ratio (y) is consistent with that
suggested by non-homogeneous flow simulations of Tio et al. (1993) for a frozen vortex field and
by Sene et al. (1994) for a two-dimensional point-vortex shear layer. This dominance was also
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Fig. 5. Transverse particle diffusion ratio as a function of 7y (ratio of particle terminal velocity to fluid fluctuations).

shown in recent experiments by Felton (1999) for spherical bubbles in a turbulent boundary layer
and by Ford and Loth (2000) for ellipsoidal bubbles in a free shear layer. However, some of the
variation may be due to the importance of secondary forces, e.g., diffusion due to fluctuations in
lift, fluid-stress, and Basset history forces. In addition, the predictions of Sene et al. (1994) and
Hunt et al. (1994) suggest that inhomogeneity may cause significant skewing of the bubble
concentration profile and increase the importance of the eddy Froude number.

Notably, the present Eulerian models for D does not predict the ““diffusion peaking” qualitatively
noted for some jet flows. However, the computational results of Elghobashi and Truesdell (1992)
suggest that this peaking behavior is at least partly due to the fact that heavy particles disperse more
than fluid particles for integration times less than 7. In fact, the long-time diffusion limit is often
not achieved in many engineering two-phase flows, e.g., much of the diffusion reported in Snyder
and Lumley (1971); whereas, the above Eulerian models are only appropriate for long-time diffusion
conditions, i.e., convection times greater than 7,,. Note that Lagrangian approaches do not gen-
erally suffer from this long-time limitation and are able to predict this peaking using resolved-eddy
simulations (e.g., Crowe, 1982) and even with CRW simulations (Bocksell and Loth, 1998).

Finally, the present diffusion model can also be used as a subgrid particle diffusion model for
Eulerian Large Eddy Simulations of the dispersed-phase by employing a particle-eddy-viscosity.
The particle subgrid diffusion is simply the product of the continuous-phase subgrid viscosity and
the subgrid particle diffusion ratio: v,s = v4D4. In the Favre-averaged dispersed-phase LES
equations (Loth, 2000), one may then compute D, using the above Csanady-based diffusion
model by substituting the sub-grid drift parameter, 7, = Vierm/(2k4/ 3)]/ 2 for y in (4), where the
subgrid turbulent kinetic energy (k4) can in turn be taken as linearly proportional to the trace of
sub-grid stress-tensor. Of course, if the particles are sufficiently large (7, > 1) we may employ
D4 = 0, and if the particles are sufficiently small (y, < 1) we may employ D, = 1.
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3. Conclusions

A simple Eulerian (Csanady-based) model was constructed for long-time diffusion of heavy or
bouyant particles and incorporates the diffusion four features: Stokes number, crossing-trajec-
tory, inertial limit, and continuity effects. The model was found to it provide reasonable
agreement for long-time diffusion in homogeneous turbulence based on experimental, DNS, and
CRW results. A key advantage of the proposed model is that it yields a closed-form analytical
result similar to Stock (1996). However, a more complex model can be developed to include
secondary particle forces, short-term diffusion, and more detailed representations of the
turbulence field.
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